Comment on “A note on the inverse eigenvalue problem for symmetric doubly stochastic matrices”

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

A Note on the Symmetric Recursive Inverse Eigenvalue Problem

In [1] the recursive inverse eigenvalue problem for matrices was introduced. In this paper we examine an open problem on the existence of symmetric positive semidefinite solutions that was posed there. We first give several counterexamples for the general case and then characterize under which further assumptions the conjecture is valid. 1. Introduction. In [1] several classes of recursive inve...

متن کامل

A note on doubly stochastic graph matrices

A sharp lower bound for the smallest entries, among those corresponding to edges, of doubly stochastic matrices of trees is obtained, and the trees that attain this bound are characterized. This result is used to provide a negative answer to Merris’ question in [R. Merris, Doubly stochastic graph matrices II, Linear Multilin. Algebra 45 (1998) 275–285]. © 2005 Elsevier Inc. All rights reserved....

متن کامل

on the nonnegative inverse eigenvalue problem of traditional matrices

in this paper, at rst for a given set of real or complex numbers  with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which  is its spectrum. in continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2013

ISSN: 0024-3795

DOI: 10.1016/j.laa.2013.06.001